. ndowManager .
requestRepaint{g

Designing Interactive Systems |

Computer Science Graduate Programme SS 2009

Prof. Dr. Jan Borchers
RWTH Aachen University

http://hci.rwth-aachen.de

Jan Borchers I media computing group el

http://media.informatik.rwth-aachen.de
http://media.informatik.rwth-aachen.de

User Interface Toolkit

Apps UIDS/UIDL

Interface Guidelines (Look&Feel)

———e— Complex widgets

Elementary widgets

HW

* Motivation: Deliver API

* problem/user-oriented instead of hardware/BVVS-specific

 50-70% of SW development go into Ul
- UITK should increase productivity

Jan Borchers 2 media computing group :

UITK: Concept

* Two parts

* Widget set (closely connected to WY)
 UIDS (User Interface Design System to support Ul design task)

* Assumptions

* Uls decomposable into sequence of dialogs (time) using widgets
arranged on screen (space)

* All widgets are suitable for on-screen display (no post-desktop user
interfaces)

* Note: decomposition not unique

Jan Borchers 3 media computing group :

UITK: Structure

e Constraints

* User works on several tasks in parallel = parallel apps
* Widgets need to be composable, and communicate with other widgets

* Apps using widget set (or defining new widgets) should be reusable

* Structure of procedural/functional UITKs

* Matched procedural languages and FSM-based, linear description of app
behavior

* But:Apps not very reusable

Jan Borchers 4 media computing group :

UITK: Structure

e OO Toolkits

Widget handles certain Ul actions in its methods, without involving app

* Only user input not defined for widget is passed on to app asynchronously
(as seen from the app developer)

- Matches parallel view of external control, objects have their own “life”

Advantage: Subclass new widgets from existing ones

* Disadvantage:
- Requires OO language (or difficult bridging, see Motif)
- Debugging apps difficult

Jan Borchers 5 media computing group :

UITK: Control Flow

* Procedural model:

* App needs to call UITK routines with parameters

* Control then remains in UITK until it returns it to app

e OO model:

* App instantiates widgets
 UITK then takes over, passing events to widgets in its own event loop

* App-specific functionality executed asynchronously in callbacks (registered
with widgets upon instantiation)

* Control flow also needed between widgets

Jan Borchers 6 media computing group :

Defining Widgets

Widget :

W =(wy...w),G=(g1...91),A=(a1...amm),1 = (i1...0p))

Jan Borchers

Output side: windows VWV, graphical attributes G
Input side: actions A that react to user inputs |

Mapping inputs to actions is part of the specification, can
change even at runtime

Actions can be defined by widget or in callback
Each widget type satisfied a certain Ul need

Input number; select item from list,...

7 media computing group : i

Simple Widgets

* Elementary widgets

* Universal, app-independent, for basic Ul needs

* E.g., button (trigger action by clicking), label (display text), menu
(select / of n commands), scrollbar (continuous display and change
of value), radio button (select / of n attributes)

Jan Borchers 8 media computing group :

In-Class Exercise: Button

2 media computing group 4P

In-Class Exercise: Button

* What are the typical components (W, G,A, |) of a
button!?

Jan Borchers 9 media computing group :

In-Class Exercise: Button

* What are the typical components (W, G,A, |) of a
button!?

* Sample solution:

 W=(text window, shadow window)
* (G=(size, color, font, shadow,...)
* A=(enter callback, leave callback, clicked callback)

* |=(triggered with mouse, triggered with key, enter, leave)

Jan Borchers 9 media computing group : id

Simple Widgets

* Container widgets

* Layout and coordinate other widgets
* Specification includes list C of child widgets they manage

* Several types depending on layout strategy

* Elementary & Container widgets are enough to create
applications and ensure look&feel on a fundamental
level

Jan Borchers 10 media computing group : i

Complex Widgets

* Applications will only use subset of simple widgets

* But also have recurring need for certain widget

combinations depending on app class (text editing,
CAD....)

* Examples:file browser, text editing window
* Two ways to create complex widgets
* Composition (combining simple widgets)
* Refinement (subclassing and extending simple widgets)

* Analogy in |IC design: component groups vs. specialized ICs

A

Jan Borchers 'l media computing group :

Widget Composition

* Creating dynamic widget hierarchy by hierarchically
organizing widgets into the Ul of an application

* Some will not be visible in the Ul
* Starting at root of dynamic widget tree, add container
and other widgets to build entire tree

* Active widgets usually leaves
* Dynamic because it is created at runtime

* Can even change at runtime through user action (menus,...)

Jan Borchers 12 media computing group :

Widgets and Windows

* The dynamic widget tree usually matches geographical contains
relation of associated BWS windows

* But: Each widget usually consists of several BWS windows

— Each widget corresponds to a subtree of the BWS window
tree!

— Actions A of a widget apply to is entire geometric range except
where covered by child widgets

— Graphical characteristics G of a widget are handled using
priorities between it, its children, siblings, and parent

Jan Borchers 13 media computing group :

Jan Borchers

Refinement of Widgets

Create new widget type by refining existing type

Refined widget has mostly the same API as base
widget, but additional or changed features, and fulfills
Style Guide

Not offered by all toolkits, but most OO ones

Refinement creates the Static Hierarchy of widget
subclasses

Example: Refining text widget to support styled text
(changes mostly G), or hypertext (also affects | & A)

14 media computing group : i

Jan Borchers

Late Refinement of Widgets

App developer can compose widgets

Widget developer can refine widgets

— User needs way to change widgets

— Should be implemented inside toolkit

Solution: Late Refinement (see WM for discussion)

Late refinement cannot add or change type of widget
characteristics or the dynamic hierarchy

But can change values of widget characteristics

15 media computing group : i

Style Guidelines

* How support consistent Look&Feel?

* Document guidelines, rely on developer discipline

- E.g., Macintosh Human Interface Guidelines (but included commercial
pressure from Apple & later user community)

* Limiting refinement and composition possible
- Containers control all aspects of Look&Feel

- Sacrifices flexibility

 UIDS

- Tools to specify the dialog explicitly with computer support

Jan Borchers 16 media computing group : i

Types of UIDS

* Language-oriented
* Special language (UIL) specifies composition of widgets

* Compiler/interpreter implements style guidelines by checking
constructs

* Interactive
* Complex drawing programs to define look of U
* Specifying Ul feel much more difficult graphically

- Usually via lines/graphs connecting user input (I) to actions (A), as
far as allowed by style guide

* Automatic
* Create Ul automatically from spec of app logic (research)
* Examples in upcoming lectures

Jan Borchers 17 media computing group : i

