[?TO © Model-View-Controller
* Central concept behind Smalltalk-80 and its first
multiwindow GUI interface

DeSigning Interactive S)'Stems Il * View: Manages graphical/textual output

* Controller: Interprets user input (mouse,kbd) and tells

Computer Science Graduate Programme SS 2009 model and/or view to change

* Model: manages data and behavior of application domain,
responds to (View) requests about its state and (Controller)
requests to change its state

Prof. Dr. Jan Borchers
RWTH Aachen University

http://hci.rwth-aachen.de

Jan Borchers ! media computing group Jan Borchers 2 media computing group

Model-View-Controller

e \ Y
* Smalltalk-80 has abstract objects Model,View, Controller
* View & Controller need little added code; offer
standardized display and input techniques
updates manipulates * Models cannot be standardized that way; any object

can be a model

* Example: String as model for a simple editor

Problem Domain Application

Jan Borchers 3 media computing group il Jan Borchers 4 media computing group

Jan Borchers

Jan Borchers

Passive Models

Simplest case

Controller responsible for notifying the view of any
changes, because it interprets user input

Model not responsible for triggering anything, unaware
of the MVC triad

5 media computing group i

View and Controller

Each view is associated with a unique controller and
vice versa (through instance variables controller and
view)

They also both have a model instance variable

The view is responsible for establishing these links

7 media computing group il

Jan Borchers

Jan Borchers

Active Models

Most models cannot be so passive

Need to inform all(!) dependent views when the
model’s state changes (by sending update msg.)

When aView is given its model, it registers itself as a
dependent of that model

6 media computing group i

Subviews

Views are nested

topView has StandardSystemController for moving
windows (— Window Manager task)

subViews have associated controllers for their
particular purpose (buttons,...)

Bidirectional pointers (subViews, superView) establish
tree structure

8 media computing group

Smalltalk: Architecture

* Machine-dependent Virtual Machine (byte-code

* Common ancestor of all window systems

* Alan Kay (PARC, early 70's): Dynabook

* Influenced by Simula, Sketchpad (DIS I), Logo

* Initially on 64K Alto

* Used in 70s to teach OO to school children...

* Introduced windows, scrolling, pop-up menus,
virtual desktop, MVC

Jan Borchers 9 media computing group i Jan Borchers

Smalltalk: Architecture

» Squeak: Recent open-source implementation (since
1996) by Alan Kay and others

» Smalltalk is a purely object-oriented and simple
language
* Messages are sent to objects

* Result := Object message: Parameters

Jan Borchers I media computing group Jan Borchers

interpreter)

* Machine-independent Virtual Image (Smalltalk
classes)
» Complete universe, simplest WS archit.

* OS, language, WS, tools: single address space, single
process structure, communicate with procedure calls

* Initially, OS & WS merged, on bare machine
* Later, WS on top of OS, but still “universe”

10 media computing group i

Morphic

User interface construction environment for Smalltalk
Orriginally devised in the mid-90s [Maloney'95]
Directness

* Change look&feel of widgets by pointing at them

* No separate “GUI editor view”
Liveness

* Ul is always active and working

* No separate “edit” and “run” modes
Reduces Ul development time, lowers cognitive load,
real-world analogy

Supports multiple users working simultaneously(!)

12 media computing group ;"

Morphic: Structural Reification

* Widgets are called morphs
* Any morph can be a container (hold submorphs)

* Submorphs managed through container, handle events
first

Jan Borchers 13 media computing group

Morphic: Layout Reification

* Layout morphs automatically and continuously lay out
their children and make layout policy tangible—Layout
Reification

* Row & Column Layout morphs

* Find compromise for submorph space requests, pass
single space request on to parent

* Minimum size and resizing policy as attributes, H&V
independent

* rigid, space fill, shrinkwrap

Jan Borchers 15

media computing group !

Jan Borchers

Jan Borchers

Morphic: Structural Reification

Advantage: entire dynamic widget tree consists of real
morphs—Structural Reification—, enabling directness
since every part of the widget tree can be
manipulated directly
* E.g,turn labeled button into button with movie on it
* Extreme case: Editor with every character as morph
Applications are just big composite morphs built by
direct manipulation, including connections between
control and target morphs(!)

14 media computing group

In-Class Exercise:
Implementing Layout

Algorithm to determine the layout of a morph that
includes a tree of submorphs?

Answer:

* Ist pass: Compute minimum size of all submorphs bottom-up

e 2nd pass: Distribute available space between submorphs top-down
Optimizations?

+ Deferred layout: Don't layout until visible

* Pruning: Maintain layoutOK flag for subtrees, do not compute
subtree layout if flag ok and required space available

» Site Selection: Try to limit recomputation to subtree up to next
likely stable (e.g. rigid) morph

16 media computing group &

Jan Borchers

Jan Borchers

Review

What is the difference between Smalltalk, Squeak, and
Morphic?

How did the original Smalltalk implement the window
system layer architecture?

What are the most particular qualities of Morphic as a
Ul toolkit?

What are morphs, and what is special about them?
How does Morphic implement widget layout?

17 media computing group i

Morphic: Ubiquitous Animation

Multiple animations active concurrently

Animations can be composited concurrently or
sequentially, abort by user possible (e.g. delete file)

Increases Liveness, allows objects to observe others

19 media computing group !

Jan Borchers

Jan Borchers

Morphic: Ubiquitous Animation

Morphs can have autonomous behavior, usually
appearing as animation (clock,...) (intrinsic step
method, triggered by system each frame or less often,
from activity list)

Also, animation behaviors (move, scale, change color)
can be assigned to any morph (as external activity,
frame- or time-based, several pacing options, triggered
from activity list n times)

These two are orthogonal

18 media computing group

Managing redraws

Damage List

Add bounding box of each changed morph to list (at both
locations if moving)

Each frame, redraw all morphs intersecting each bounding box in
damage list, back-to-front off screen, then copy to screen (double
buffering)

Improvements

Merge overlapping bounding boxes when reported

Prune submorph drawing to damage rectangle (works well with
Row&Column morphs)

Don't draw occluded morphs (requires each morph to fill its
bounding box)

20 media computing group !

Jan Borchers

Jan Borchers

Morphic: Live Editing

No edit/run modes
* +:No mode changes, no cognitive load, works with n users
How distinguish operating from editing gestures?
* Context-sensitive meta menu on right click
* Includes access to code for morph, decomposable

Special commands to access submorphs (spatial
demultiplexing), specify additional operands

21 media computing grou|

Smalltalk: Evaluation

Availability: high (Squeak,...)
Productivity: medium (depending on tools, libs used)

Parallelism: originally none, now external
* But linguistic crash protection

Performance: medium (high OO overhead since
everything is an object)

Graphic model: originally RasterOp
Style: flexible (see Morphic, for example)

Extensibility: highest (full source available to user, code
browser)

23 media computing grou

X B Getting Started... O

(X @ Welcome to...
Squeak 3.0

Do

Squeak is a work in progress based on Smalltalk-80, with which it
is still reasonably compatible. Every Squeak release includes all

source code for the Squeak system, as well as all source code for ,\ open...
its Virtual Machine (VM, or interpreter, also written in Smalltalk)s . dismiss this menu

Browser openBrowser \ browser
[Blue items in this window are active text. If an item contains a package browser yercirere—r]
URL, it will require internet access and may take a while to load] ® method finder =

queakLogo workspace
Not only is all source code included, and changeable at will, it is Tne worlds of Squeak o ;gie list
ile.

also completely open and free. The Squeak system image runs
bit-identically across all platforms, and VMs are available for just o
about every computer and operating system available, The
history of (he Squeak project can be read at

fipuist,

transcript - a
inner world
simple change sor|

dual change sorte

! The Tarkds ol email reader =
- The Squeak license and most other relevant information can be " web browser
) found on the Squeak Home Page, 3 IRC chat
http://www.Squeak.org | mve project T
[|’—‘| Y morphic projec o
B Morphic P o
° This release of Squeak uses the Senders of add:afterindex: [4 H
a Squeak also includes an MVC af xXn OrderedCollection hierarch:
k projects (see the world menu ‘of Collections-Sequenceable s
ProtoDbject =] all - [={add:
Object =) accessing (2] add:after:
Collection <copying add:afterIndex:
SequenceableCollect| |adding add:before:
) CgderedCollection =] removin addall:
rxr;(2 M‘:{fsﬁ;&:ﬁ“ g N raphicSymbol - en_umeragtmg addAIEirst
— private addAllLast: ==e \J
*#(1 2 3 4). *(2 3). true *Collection includesAllOf: e | 2 class |testing 3dFi YT T
M PR p—p—_—
(1 23 4) includesAllon: (2 3) — wue di 3/15/1999 14:01 » adding 1 implementor in no change set o o
*21 234 g includesAny0f: #(2 3) - : - (r)u = = = = =
#(1 23 4) windowReqiewLabel: #(2 (T ol i i : =
1534 T e ?) \yersions))inst ars) O
#(1234)" *#(23) - true : newObject afterindex: index =
"Add the argument, newObject, as an element of the receiver. Put it in
the just after index. Answer newObject.”
Type a fragment of & selector in the top pane. Accept it, 0
j‘ self insert: newObject before: firstindex + index.

the items. 3. 4. 7

\Quin o)

Or, use an example to find a method in the system. Type
receiver, args, and answer in the top pane with periods between

+ newObject

VB,

Smalltalk: Evaluation

* Adaptability: low (no explicit structured user resource
concept; although storing entire image possible)

* Resource sharing: high

+ Distribution: none originally, yes with Squeak

* API structure: pure OO, Smalltalk language only

* APl comfort: initially low, higher with Squeak&Morphic
* Independency: High (due to MVC paradigm)

* Communication: flexible (objects pass messages)

Jan Borchers 24 media computing grou

